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Abstract

Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions ðWcÞ of clay.

Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase

‘particles’; in particular, the particle volume fraction ðfpÞ; the particle aspect ratio ðL=tÞ; and the ratio of particle mechanical properties to those

of the matrix. These important aspects of as-processed nanoclay composites require consistent and accurate definition. A multiscale

modeling strategy is employed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns,

the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a)

exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of

nanometer level height, and the matrix, if semi-crystalline, consists of fine lamella, oriented with respect to the polymer/nanoclay interfaces.

Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs (the number of silicate sheets in a clay stack, N;

and the silicate sheet layer spacing, dð001Þ) are used to determine geometric features of the as-processed clay ‘particles’, including L=t and the

ratio of fp to Wc: These geometric features, together with estimates of silica lamina stiffness obtained from molecular dynamics simulations,

provide a basis for modeling effective mechanical properties of the clay particle. In the case of the semi-crystalline matrices (e.g. nylon 6), the

transcrystallization behavior induced by the nanoclay is taken into account by modeling a layer of matrix surrounding the particle to be highly

textured and therefore mechanically anisotropic. Micromechanical models (numerical as well as analytical) based on the ‘effective clay

particle’ were employed to calculate the overall elastic modulus of the amorphous and semi-crystalline polymer–clay nanocomposites and to

compute their dependence on the matrix and clay properties as well as internal clay structural parameters. The proposed modeling technique

captures the strong modulus enhancements observed in elastomer/clay nanocomposites as compared with the moderate enhancements

observed in glassy and semi-crystalline polymer/clay nanocomposites. For the case where the matrix is semi-crystalline, the proposed

approach captures the effect of transcrystallized matrix layers in terms of composite modulus enhancement, however, this effect is found to

be surprisingly minor in comparison with the ‘composite’-level effects of stiff particles in a matrix. The elastic moduli for MXD6-clay and

nylon 6-clay nanocomposites predicted by the micromechanical models are in excellent agreement with experimental data. When the

nanocomposite experiences a morphological transition from intercalated to completely exfoliated, only a moderate increase in the overall

composite modulus, as opposed to the expected abrupt jump, was predicted.

q 2003 Published by Elsevier Ltd.
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1. Introduction

Polymeric materials are often reinforced by stiff fillers to

improve mechanical properties. The efficiency of reinforce-

ment depends on the filler aspect ratio, the filler mechanical

properties, and the adhesion between the matrix and the

filler. Single clay layers were proposed to be an ideal

reinforcing agent in 1974 [1] due to their extremely high

aspect ratio and also due to the nanometer filler thickness

being comparable to the scale of the polymer chain

structure. Two decades later, the Toyota research group

(Kojima, Usuki, Kawasumi, Okada, Fukushima, Kurauchi,

and Kamigaito, 1993) [2,3] revealed a major breakthrough

in polymer/clay nanocomposite technology with the success

of in situ polymerization of nylon 6/clay nanocomposites, a
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synthesis method economically suitable for industrial

production. A doubling of both the tensile modulus and

strength was achieved with as little as 4.7-weight percent

clay; furthermore, the property enhancements extend to

relatively high temperatures and, indeed, act to substantially

increase ‘transition temperatures’ over that of the parent

homopolymer (an increase of 80 8C in the heat distortion

temperature has been observed [2,3]). Over the last decade,

polymer/clay nanocomposites have been observed to exhibit

dramatic enhancement in many other physical properties,

including barrier [4–6], flammability resistance [7], and

ablation performance [8]. The nanocomposite technology

has also been extended to various polymer systems,

including elastomers [9,10] and epoxies [11,12]; different

levels of property enhancement are achieved, depending on

the chosen matrix polymer.

Mechanics-based composite models have proved suc-

cessful in predicting the enhanced mechanical properties of

conventional polymer/fiber and flake composites, where the

filler lengthscale is on the order of tens of microns or larger.

The continuum mechanics-based composite models gener-

ally include parameters such as the particle volume fraction,

particle aspect ratio and orientation, and particle/matrix

property ratios. Researchers have recently begun applying

some of these models to assess the thermal-mechanical

properties of polymer nanocomposites [13–16]. Concepts

such as ‘matrix’ and ‘particle’, which are well-defined in

conventional two-phase composites, can no longer be

directly applied to polymer/clay nanocomposites due to

the hierarchical nanometer lengthscale morphology of the

particle structure and surrounding matrix, as recently

emphasized by Brune and Bicerano [15]. Issues as basic

as the proper description of the mechanical behavior of

nanoparticles of atomic level thickness, as well as the proper

conversion of filler weight fraction to particle volume

fraction, require careful treatment if one is to understand the

dependence of composite properties on nanoclay content

and structure. In addition, the transcrystallization behavior

of semi-crystalline matrix, induced by the presence of

nanoclay, needs to be properly accounted for in order to

achieve a comprehensive understanding of semi-crystalline

polymer–clay nanocomposites.

In this paper, mechanics-based model predictions of the

dependence of composite material stiffness on plate-like

filler content are presented. The hierarchical nature of the

underlying structure of polymer/nanoclay composites is

then detailed, and the applicability of well-established

models to this new class of composite material is discussed.

A multiscale modeling strategy accounts for the hierarchical

morphology of the nanocomposite through use of an

‘effective particle’, defined and employed to represent the

inherently discrete nanoclay structure as a basic object in

micromechanical modeling. Particular attention is given to

the mechanical description of the clay sheets and incorpor-

ation of this description into an effective particle model. The

potential for describing macroscopic mechanical property

enhancements in terms of composite-level effects is

explored, treating the nanocomposite as an appropriately

described matrix containing a suitable dispersion of the

‘effective particles’. Model predictions of macroscopic

modulus are in excellent agreement with experimental

data for various polymer (amorphous vs. semi-crystalline)-

clay nanocomposites.

2. Conventional ‘particle’-based micromechanical

models

Prediction of the mechanical properties of discontinuous

fiber/flake composite materials has been a subject of

extensive study. The composite of interest is considered to

consist of two homogeneous phases: matrix and high-

aspect-ratio particles. Here, both analytical and numerical

predictions of the overall composite stiffness are presented;

stiffness enhancement mechanisms are then explored using

simple, idealized shear-lag analysis and numerical sol-

utions. These models can be readily applied to polymer/clay

nanocomposites, where the intercalated nanoclay is a

heterogeneous laminate-like structure (Section 3), with

reasonable homogenization of the ‘effective particle’

geometry and properties (Section 4). Various material and

geometrical models of intercalated particles are explored

(Section 5). Finally, model results are favorably compared

with a wide range of experimental data (Section 6).

2.1. Analytical micromechanical models

Numerous micromechanical models (e g. [17–25]) have

been proposed to predict the elastic constants of discon-

tinuous fiber/flake composites. These models generally

depend on parameters including particle/matrix stiffness

ratio Ep=Em; particle volume fraction fp; particle aspect ratio

L=t; and orientation. In applications relevant to the present

study, the particles and the matrix are assumed to be linearly

elastic, either of which can be taken as isotropic or

transversely isotropic. Here, Ep and Em denote the elastic

moduli of the particle and the matrix, respectively. Tucker

[26] provides a good review of the application of several

classes of micromechanical models to discontinuous fiber-

reinforced polymers. He notes that, of the existing models,

the widely used Halpin–Tsai equations [21–23] give

reasonable estimates for effective stiffness, but the Mori–

Tanaka type models [20,27] give the best results for large-

aspect-ratio fillers. Here, we focus on prediction of the

longitudinal stiffness, E11; for composites filled with

unidirectional disk-like particles. The Halpin–Tsai equation

and a closed-form solution based on the Mori–Tanaka

model [27] are given in Eqs. (1) and (2), respectively

EðH–TÞ
11

Em

¼
1 þ 2ðL=tÞfph

1 2 fph
ð1Þ
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h ¼
ðEp=EmÞ2 1

ðEp=EmÞ þ 2ðL=tÞ
;

EðM–TÞ
11

Em

¼
1

1 2 fpz
; ð2Þ

z ¼ ½22vmA3 þ ð1 2 vmÞA4 þ ð1 þ vmÞA5A�=ð22AÞ

where fp is particle volume fraction, z is a positive

coefficient depending on the matrix Poisson ratio, vm; and

constants A and Ai; A and Ai can be calculated from the

matrix/particle properties and components of the Eshelby

tensor [17], which depend on the particle aspect ratio ðL=tÞ

and dimensionless elastic constants of the matrix (see Ref.

[27] for details).

Fig. 1 depicts the dependence of E11=Em on fp; L=t; and

Ep=Em; as predicted by Eqs. (1) and (2) for aligned disk-

shaped particles. Both models show the same expected

trends, but the Halpin–Tsai model is consistently stiffer

than the Mori–Tanaka model. By taking the Halpin–Tsai

shape factor (given as 2L=t in Eq. (1)) to be an adjustable

parameter, the Halpin–Tsai equations can give nearly

identical results to the Mori–Tanaka model [14].

In Fig. 1(a), the predicted E11 increases almost linearly

with increasing fp; for a fixed L=t and Ep=Em: Note that this

only holds when fp is small (Fig. 1(a) is plotted for the range

0:0 , fp , 0:10); in fact, for fp ! 1; Eqs. (1) and (2) can

both be linearized in the form

E11

Em

¼ 1 þ Bfp; ð3Þ

where B is a positive constant (assuming Ep=Em . 1),

depending on particle aspect ratio and particle/matrix elastic

properties.

Particles with large L=t or high Ep=Em prove more

efficient in stiffness enhancement. However, the dependen-

cies of E11=Em on L=t and Ep=Em for a fixed fp are rather

nonlinear, as shown in Fig. 1(b) and (c). Reduced load

transfer efficiency associated with large L=t or high Ep=Em

accounts for this nonlinearity, as shown later using shear lag

analysis in Section 2.2.

2.2. Numerical micromechanical model

2.2.1. Model description

Models of various representative volume elements

(RVEs) of the underlying structure of the nano-clay filled

polymers are constructed. The structure can be described by

a set of geometric and material features. The geometric

features of nano-clay filled polymer composites can be

thought of in terms of features of clay particles; in particular,

particle dispersion, particle volume fraction, particle aspect

ratio, and particle orientation distribution. The material

features can be described in terms of clay intercalation vs.

exfoliation, clay/particle interface behavior, and polymer

morphology (both in the vicinity of particles and away from

particles). In this work, we focus our attention on the

simplified case of uniform, well-aligned and perfectly

bonded particles in an isotropic matrix, and examine the

influence of the RVE representation of various geometric

and constitutive features of the particles and their

Fig. 1. Results of Mori–Tanaka model (M–T) and the Halpin–Tsai

equations (H–T): dependence of E11 on (a) fp; for L=t ¼ 50 and 100,

Ep=Em ¼ 100; (b) L=t; for fp ¼ 0:01 and 0.02, Ep=Em ¼ 100; (c) Ep=Em; for

fp ¼ 0:01 and 0.025, L=t ¼ 100:
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distribution in the matrix. A typical RVE ð fp ¼ 0:02, L=t ¼

100=1Þ used in the finite element method (FEM) based

micromechanical modeling of this paper is shown in Fig. 2.

The RVE dimensions are large compared to the character-

istic size of the particle; the number of particles included in

the RVE is large enough (,50–100) to obtain an accurate

statistical representation of this structure. The structures are

periodic in the direction of particle alignment; partial-length

particles intersecting one lateral RVE boundary are com-

pleted by a remaining length, at the same elevation, inter-

secting the opposite lateral boundary.

Two-dimensional plane strain simulations of well-

oriented random particle distributions are subject to small-

strain axial tensile loading. Periodic boundary conditions

expressed in terms of the macroscopic strain tensor 1 are

applied to the RVE. The macroscopic normal strain 111 is

used to drive the deformation of the entire RVE, which

satisfies the kinematic periodic boundary conditions and

equilibrium. Fig. 3 shows a schematic of (a) an undeformed

RVE and RVEs subjected to (b) axial stretch in the

x1-direction while macroscopically traction free in the

x2-direction, and (c) simple shear. The exaggerated scale of

deformation illustrates the periodic boundary conditions.1

The principle of virtual work has been used to

calculate the overall mechanical response of the RVE,

following Danielsson, Parks and Boyce [30]. Here, we

adapt their scheme to the frame of small deformation

gradients. Components of the macroscopic stress tensor s

are derived in terms of the generalized reaction forces of

two ‘auxiliary nodes’, the ‘displacement’ components of

which are those of the macroscopic strain tensor 1 (see

Ref. [30] for details).

All plane strain simulation results presented in this paper

are normalized with corresponding plane strain properties of

the isotropic matrix; for instance, the calculated plane strain

longitudinal modulus, Ep
11; is normalized with respect to the

matrix plane strain modulus Ep
m: For subsequent conven-

ience, we do not further distinguish a plane strain property

with ‘ p ’ in the remaining contents of this paper.

2.2.2. Results

The plane strain FEM simulation results of E11=Em are

compared with the uniaxial analytical Mori–Tanaka model

solution in Fig. 4(a), (b), and (c); the Mori–Tanaka-type

model is chosen for comparison since it is among the more

accurate analytical models [26]. Each FEM data point is

averaged over numerical calculations of 10 random RVE

realizations of a composite structure specified by fp; L=t; and

Ep=Em; the variation in the macroscopic responses among

these random realizations is reflected in Fig. 4 by error bars.

The degree of variation tends to increase with increasing L=t

or fp; nevertheless, the averaged FEM results and the

analytical model solutions exhibit similar trends. In

particular, E11=Em is predicted to increase almost linearly

with fp by both FEM simulations and the Mori–Tanaka

model (Fig. 4(a)), and the nonlinear dependencies of E11=Em

on L=t (Fig. 4(b)) and on Ep=Em (Fig. 4(c)) are captured by

both numerical and analytical models as well. The

underlying phenomenon governing these dependencies is

the load transfer mechanism; i.e. the manner in which load

is transmitted through the matrix to the particles.

When a discontinuous high-aspect-ratio particle compo-

site is subjected to tensile loading, the load is transferred

from the surrounding matrix to the particle mainly through

interface shear stress. We speculate that this mechanism is

also operative in nanoclay composites. Evidence supporting

this proposition has been obtained in recent FTIR studies on

nylon-6/nanoclay composites [31]. The clay FTIR peaks

shift in a monotonic manner as the nanocomposite is

subjected to increasing elastic strain, and reversibly shifts

back upon unloading. These FTIR results document that

strain and load are transmitted to the nanoclay sheets during

loading of the composite [31].

First, we review the factors influencing load transfer

efficiency using simple shear-lag concepts, which do not

explicitly consider particle–particle interactions. Shear-lag

analysis [24] reveals that large particle aspect ratio L=t and

Fig. 2. A typical RVE for FEM micromechanical simulation (fp ¼ 0:02; L=t ¼ 100; number of particles in the RVE ¼ 100). Scales are in units of particle

thickness, t:

1 FEM-based micromechanical modeling of the mechanical behavior

of materials containing random distributions of particles utilizing

periodic boundary conditions have also been employed by other

investigators (e.g. Bergström and Boyce [28]; Gusev [29]).
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high relative matrix shear modulus Gm=Ep are desired for

efficient stiffness reinforcement. Fig. 5(a) and (b) depict the

effect of L=t and Ep=Em on the particle axial strain

distribution, 1p; at a macroscopic axial strain 1 ¼ 0:5%

(note that particle stress distributions are similar). Particles

with larger L=t have higher maximum strain, 1max
p , and

longer effective length (the length of the central portion of

the particle carrying significant load), Le; as shown in Fig.

5(a); however, at sufficiently large L=t; 1max
p ! 1; Le ! L;

and the average particle strain (stress) approaches a

constant, leading to the saturation of E11=Em shown in Fig.

4(b). The saturation of E11=Em at high Ep=Em (Fig. 4(c)) is a

compromise result of two competing factors: the high filler

stiffness tends to increase composite stiffness, but the low

Gm=Ep ratio tends to reduce the load transfer efficiency.

Decreases in both 1max
p and Le with increasing Ep=Em (or

decreasing Gm=Ep) are demonstrated in Fig. 5(b).

Fig. 6 shows the axial strain contour in a RVE loaded to

111 ¼ 0:005; the typical axial stress build-up in a particular

‘isolated’ particle is depicted in Fig. 6(a). The stress

distributions in particles partly or completely ‘overlapped’

by other particles, as shown in Fig. 6(b) and (c), demonstrate

the negative effects of particle interaction on load transfer

efficiency: high-aspect-ratio particles shield the matrix from

straining, and thus reduce the efficiency of load transfer to

neighboring particles. As fp or L=t increases, the chances of

such deleterious particle interactions increase, which, in

turn, leads to the nonlinear dependence of E11=Em on L=t; as

shown in Fig. 4(b)2. The broadening of error bars with

increasing fp or L=t; shown in Fig. 4(a) and (b), can also be

attributed to the increased extent of particle interaction; for

a given fp; particles with larger L=t have a higher tendency to

cluster during a computer-generated ‘random’ seeding

process, which will result in a significantly lower macro-

scopic E11 when the clustering is dominated by the kind of

particle ‘overlapping’ shown in Fig. 6(c), but a higher E11 if

the clustered particles form some inter-connected ‘channels’

due to close end-to-end distance rather than ‘overlapping’ of

each other.

3. Hierarchical morphology of polymer/clay

nanocomposites

The morphology of polymer/layered-silicate composites

has a hierarchical structure. The dispersion of the clay in the

matrix is typically described in terms of intercalation vs.

exfoliation. In the intercalated structure, inter-layer

domains of the primary clay particles are penetrated by

polymer chains and consequently expand, with a typical

inter-layer spacing of the order of 1–4 nm; in contrast, the

fully exfoliated morphology consists of single silicate layers

dispersed in a polymer matrix. In practice, however, many

systems fall between these two idealized morphologies.

Fig. 7 shows a TEM image of a nanocomposite containing

both exfoliated and intercalated structures [32]. Different

synthesis and processing histories will produce positional

and orientational correlations between the platelets. These

histories contribute to the development of a hierarchical

morphology exhibiting nano-, meso-, and micro-level

features. A summary of the morphology of polymer/clay

nanocomposites, and of corresponding microscopy and

scattering techniques to determine such hierarchical mor-

phology, was given by Vaia [33].

Characteristic parameters of various length scales are

necessary in order to capture the special hierarchical

morphology of nanocomposites. Recently, Nam and cow-

orkers [13] have ascertained key features of the hierarchical

morphology of intercalated polypropylene/clay nanocom-

posites (PPCN) using WAXS, SAX, TEM, polarized optical

microscopy and light scattering. Fig. 8 shows a schematic of

such a structure and illustrates the parameters of various

hierarchies. The representative values of these parameters

for a 4-wt% PPCN [13] are listed in Table 1. In an

intercalated structure, where the inter-layer spacing (dð001Þ

in Fig. 8) within a multi-layer stack of clay is usually 1–

4 nm [33], the intra-layer polymer chains have a highly

confined morphology. In the exfoliated or partially exfo-

liated systems, the particle separation ðjpÞ is about 20–

50 nm [33], and is on the same order of crystal lamellae

thickness. Such spacing, along with the detailed molecular

interaction between clay and polymer, has an impact on the

formation of crystallites in semi-crystalline polymer matrix

(in particular, transcrystallization behavior of the matrix

can be induced by the presence of the silicate layers), as

observed in morphology studies on clay-filled polymer

[34,35] as well as other filled polymers [36–39].

Fig. 3. Schematic of RVEs, illustrating periodic boundary conditions. (a) Undeformed RVE; (b) RVE under uniaxial tensile strain 111 ¼ d=L1; (c) RVE under

simple shear g12 ¼ d=L2:

2 The FEM-based RVE considered rectangular plate-like particles,

whereas the Mori–Tanaka model considers more circular disk-like

particles; therefore, the FEM model captures a larger particle overlap and

strain shielding effect. Reality is likely somewhere in between, as the in-

plane geometry of real particles is somewhat irregular.
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Here, based on experimental observations together with

modeling considerations, we identify two important sets

of structural descriptors for the clay ‘particle’: primary

descriptors and intermediate descriptors. The primary

descriptors are the characteristic clay structural parameters

directly related to processing, including the clay weight

fraction ðWcÞ; the clay atomic structure, the silicate

interlayer spacing ðdð001ÞÞ; the average number of silicate

layers per clay stack ðNÞ; and the inter-layer gallery

material. The intermediate descriptors are conventional

composite material descriptors, including the particle

volume fraction ð fpÞ; the particle aspect ratio ðL=tÞ; and

the ratio of particle ðEpÞ and matrix ðEmÞ stiffnesses, which

may be anisotropic.

In order to develop predictive models of the macroscopic

properties of polymer/nanoclay composites, a mapping of

the primary descriptors to the intermediate descriptors of the

nanoclay particle is needed, as presented next in Section 4.

Micromechanical models are then constructed and utilized

to compute the macroscopic mechanical properties of the

polymer/clay nanocomposites in terms of the intermediate

descriptors, as presented in Sections 5 and 6.

Fig. 4. Plane strain FEM results in comparison with the uniaxial results of

Mori–Tanaka model: dependence of E11=Em on (a) fp; for L=t ¼ 50 and 100,

Ep=Em ¼ 100; (b) L=t; for fp ¼ 0:01 and 0.02, Ep=Em ¼ 100; (c) Ep=Em; for

fp ¼ 0:015 and 0.025, L=t ¼ 100: Each FEM data point is averaged over

results of 10 random RVE realizations; the variation is reflected by error

bars.

Fig. 5. Normalized particle strain distribution, averaged over all particles in

the RVE. 1p and 1 denote the axial strain in the particle and the applied

macroscopic strain ð1 ¼ 0:5%Þ; respectively, x is the distance along the

particle, in units of particle thickness t: (a) Effect of particle aspect ratio,

L=t ¼ 25; 50, 100, 200, 300, and 400, fp ¼ 0:02; Ep=Em ¼ 100; (b) Effect of

particle/matrix stiffness ratio, Ep=Em ¼ 50; 100, 200, and 400, fp ¼ 0:01;

L=t ¼ 400:
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4. Effective representation of the nanoclay

Models for the macroscopic properties of composite

materials operate on the ‘particle’ and the ‘matrix’. The total

spatial volume of the composite is well partitioned into the

‘particle domain’ and the ‘matrix domain’, as shown in Fig.

10(a); each domain is then treated as a homogeneous

material, with certain elastic properties. However, a clearly

defined ‘particle domain’ does not exist in intercalated

polymer/clay nanocomposites; the layered structure of

nanoclay (single silicate layers separated by inter-layer

galleries) can be distinctly identified in TEM images, where

example TEM micrographs of MXD6 nylon/clay nanocom-

posites with various weight percent clay are shown in Fig. 9.

Here, the idea of ‘effective particle’ is utilized in a way

similar to that proposed in Brune and Bicerano [15]. The

‘effective particle’ is identified by a well-defined spatial

volume, occupied by both the silicate layers and the inter-

layer galleries, as shown in Fig. 10(b). We pay particular

attention to the mechanical description of the silicate layers.

The ‘effective particle’ is used as the basic element in

continuum micromechanical models when assessing the

influence of nanoclay content on overall nanocomposite

properties.

4.1. Structure of intercalated clay

Fig. 9 shows a highly magnified TEM image of MXD6

nylon/clay nanocomposite with 5.27-wt % clay. Analysis of

the X-ray diffraction (XRD) pattern of this nanocomposite

reveals a ,3-layer-crystalline structure with an average

inter-layer spacing of dð001Þ ¼ 4:1 nm; in contrast, the corre-

sponding organo-clay crystallite (without polymer pene-

tration) has ,4 layers and an average inter-layer spacing of

dð001Þ ¼ 2:4nm [40].

The hierarchical structure of the intercalated nanoclay is

well shown in Fig. 11, where representations of the nanoclay

at various lengthscales, such as ‘particle’, ‘multi-layer stack’,

and ‘repetitive lattice cell’, in turn, are the fundamental

elements of interest in analytical/numerical micromechanical

Fig. 6. Effect of strain shielding on load transfer efficiency (RVE with fp ¼ 0:03; L=t ¼ 100; Ep=Em ¼ 100). (a) ‘Isolated’ particle; (b) partly ‘overlapped’

particle; (c) completely ‘overlapped’ particle. (a), (b), (c) 1: Normalized stress distributions in particle (a), (b), and (c), respectively; sp is the axial stress in the

particle, s is the macroscopic axial stress (s ¼ 11:5 MPa), x=L is the fractional distance along the particle, from left to right.

Fig. 7. TEM image of 10 wt% Cloisite 30A in a diamine-cured epoxy [32].
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Fig. 8. Schematic of hierarchical morphology and characteristic parameters (adapted from Ref. [13]).

Fig. 9. TEMs of MXD6 nylon/clay nanocomposite with various clay contents: (a) 1.1 wt%, (b) 3.67 wt%, (c) 4.17 wt%, (d) 5.27 wt%.

Table 1

Characteristic values for hierarchical structure-describing parameters for 4-wt% PPCN, [13] (see also Fig. 8)

Symbol Characteristic parameter Typical value (nm)

Lp Length of the dispersed clay particles 130–180

jp Correlation between particles (inter-particle spacing) 40–60

tp Thickness of the clay particles 7–9

dð001Þ Inter-layer spacing of the (001) plane in intercalated clay 3

dlamellae Average lamellae thickness of polymer matrix crystallite 7

Llamellae Long-period lamellae thickness of polymer crystallite 15
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modeling, WAXS, and molecular dynamics simulation. While

the ‘particle’ in micromechanical modeling is simply

characterized by its aspect ratio (geometry) and elastic

properties, the underlying structure of the nanoclay must be

characterized and approximated in order to obtain reasonable

estimates of the effective geometry and properties of the

‘particle’; indeed, both WAXS and molecular dynamics

simulation results are indispensable assistances to micro-

mechanical modeling of polymer/clay nanocomposites.

For simplicity, the internal structure of an intercalated

clay particle is idealized as a multi-layer stack containing N

single silicate sheets (each sheet has an area A; an effective

thickness ds and mass M) with uniform inter-layer spacing

dð001Þ; as shown in Fig. 11(b). Separating adjacent sheets is a

so-called gallery layer comprising both surfactants and

polymer matrix chains that have penetrated the inter-silicate

layers during various stages of synthesis and processing.

The particle thickness t can be related to the internal

structural parameters N and dð001Þ through

t ¼ ðN 2 1Þdð001Þ þ ds; ð4Þ

where ds is the silicate sheet thickness. A similar approach is

used in Ref. [15] where effective particle thickness is

expressed in terms of multiples of sheet thickness and

gallery thickness. Note that there is some ambiguity in

assigning a precise value to thickness for nanoparticles of

atomic level thickness such as carbon nanotubes (CNT)

and nanoclay sheets, especially with regard to providing

accurate representation of mechanical properties using

continuum level models (e.g. [41–43]). Therefore, we

choose to represent the effective particle thickness in

terms of the measurable interlayer spacing dð001Þ and a

single sheet thickness ds; where ds will be defined later to be

a mechanical thickness of the sheet3.

Each individual silicate sheet further consists of n

repetitive lattice cells, each of area A0; thickness ds; and

molecular weight M0: The crystal structure of a montmoril-

lonite lattice cell used in molecular dynamics simulations [43]

is shown in Fig. 11(c). Table 2 summarizes its characteristic

parameters. This model framework will later be used to

determine effective properties of the clay ‘particle’, including

determination of the particle aspect ratio, volume fraction of

the particle (in terms of clay weight fraction), and particle

stiffness (which may be anisotropic). Note that the subscripts

silicate and gallery are used to denote the properties of the

silicate sheet, and the gallery, respectively. The subscripts p

and m are used to denote the properties of the effective particle

and the matrix, respectively.

Important parameters of the clay structure are the number

of silicate sheets per unit particle thickness:

xN ¼
N

t
¼

N

ðN 2 1Þdð001Þ þ ds

; ð5Þ

which can be alternatively expressed as the volume fraction

Fig. 11. Hierarchical structure of the nanoclay.

Fig. 10. Illustrations of the ‘particle’ and ‘matrix’ domains in (a)

conventional composite, (b) nanocomposite. The dash-lined boxes in (b)

indicate spatial domain of the ‘effective particle’.

3 Furthermore, surrounding the exterior silicate layers is a special

morphology material composed of some blend of surfactants and confined

matrix polymer chains, which rapidly transitions to 100% matrix material

with increasing distance from the particle. For present purposes, we neglect

these special regions and features, and simply include them within the

matrix volume and matrix properties. The proposed approach can be

straight forwardly extended to account for these features within the

definition of the ‘effective particle’.
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of silicate in the effective particle

x ¼
Vsilicate

Vp

¼
Nds

ðN 2 1Þdð001Þ þ ds

¼
1

1 2
1

N

� �
dð001Þ

ds

� �
þ

1

N

� � ; ð6Þ

where Vsilicate and Vp are the volumes assigned to the silicate

sheets in a stack and to the effective particle, respectively.

The dimensionless quantity x is a function of two internal

parameters of the nanoclay particle: its number of silicate

sheets, N; and the relative inter-layer swelling, dð001Þ=ds:

Fig. 12 shows decreases in silicate volume fraction x with

increasing dð001Þ=ds for different N-values; the observation

that the case N ¼ 1 stands out from the others ðN . 1Þ

suggests significant distinction in structure-related effective

particle properties between exfoliated systems and inter-

calated systems (similar effects on xN are to be expected

since xN ¼ x =ds).

4.2. Properties of the effective clay particle

The effective particle is ‘equivalent’ to the multi-layer

stack shown in Fig. 11(b) in the sense that it possesses the

same L=t; fp; and overall mechanical properties as the

discrete stack. With Eq. (4), L=t can be calculated as

L

t
¼

L

ðN 2 1Þdð001Þ þ ds

: ð7Þ

Eq. (7) can be further written in terms of xN and N as

L

t
¼

L

N

� �
xN : ð8Þ

4.2.1. Conversion from clay weight fraction ðWcÞ to particle

volume fraction ð fpÞ

Experimental studies (e g. [3], [44]) detail and plot

property enhancement data in terms of weight fraction

clay. Since the clay content is provided in terms of weight

fraction Wc (ash weight), it is necessary to establish a

quantitative connection between Wc and the volume fraction

of the ‘effective particle’ fp; an important parameter in

micromechanical models.

First, consider a two-phase composite consisting of

matrix and particles (or ‘effective particles’ in the case of a

nanocomposite); the particle volume fraction fp and particle

weight fraction Wp are related according to

fp ¼
Wp=rp

Wp=rp þ ð1 2 WpÞ=rm

; ð9Þ

where rp and rm are the mass densities of the particle and

the matrix, respectively.

For an intercalated nanocomposite, Wc differs from the

‘particle’ weight fraction Wp; since the ‘particle’ consists of

both silicate sheets and the inter-layer galleries. The two

quantities are related through

Wp

Wc

¼
rpVp

rsilicateVsilicate

¼
rp

rsilicate

� �
=

Vsilicate

Vp

 !

¼
rp

rsilicate

1

x
; a; ð10Þ

where rsilicate is the mass density of the silicate sheet, and the

ratio Wp=Wc is defined as a:

Taking Wp ¼ aWc into Eq. (9), we can write fp as a

function of Wc

fp ¼
Wc=rp

Wc=rp þ ð1=a2 WcÞ=rm

: ð11Þ

When Wc is small, as it often is for the nanocomposite,

Eq. (11) can be linearized as

fp <
arm

rp

 !
Wc ¼

rm

rp

·
rp

rsilicate

·
1

x

 !
Wc

¼
rm

rsilicate

·
1

x

� �
Wc: ð12Þ

The density rsilicate can be calculated from the montmoril-

lonite lattice parameters given in Table 2,

rsilicate ¼ rlattice ¼
M0

A0ds

¼
2:44

ds

� �
nm g=ðcmÞ3: ð13Þ

Table 2

Molecular characterization of montmorillonite lattice cell (Manevitch and

Rutledge, [43])

Unit Symbol Value

Chemical structure 2{Al2Si4O10(OH)2}

Planar dimensions nm ða0; b0Þ (0.53, 0.92)

Planar area (nm)2 A0 ¼ a0b0 0.49

Thickness nm c0ðc0 ¼ dsÞ 0.615

Molecular weight g/mol M0 720

Fig. 12. Dependence of particle silicate volume fraction x on clay structural

arameters N and dð001Þ=ds:
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Taking Eq. (13) and an assumed value of rm ¼ 1:0 g=ðcmÞ3

into Eq. (12), we have

fp ¼
0:41ds

nm

� �
Wc

x
¼

0:41

xN

Wc

� �
nm21

: ð14Þ

The conversion ratio fp=Wc given in Eq. (14) is plotted as a

function of N and dð001Þ=ds in Fig. 13 (note that this ratio is in

proportion to the inverse of x; which is plotted in Fig. 12).

Beall [45] took N ¼ 1 and ds ¼ 1 nm; and obtained fp ¼

0:4Wc; consistent with the present result; however, other

particle structures can lead to fp=Wc ratios .1, reflecting the

increased spatial extent of swollen intercalated stacks.

4.2.2. Effective anisotropic mechanical properties of the

particle

Considering the multi-layer clay particle as a laminate

(with isotropic silicate sheets and orthotropic polymeric

galleries), as shown in Fig. 14, the overall elastic properties

of the effective particle can be estimated as

Ep;11 ¼ xNEsilicateds þ ð1 2 xÞEgallery;11

¼ xEsilicate þ ð1 2 xÞEgallery;11; ð15Þ

Ep;22 ¼
EsilicateEgallery;22

ð1 2 2bvgalleryÞ½ð1 2 xÞEsillicate þ xEgallery;22�
; with

b ¼
Esilicatevgallery 2 Egalleryvsilicate

ð1 2 vgalleryÞEsilicate þ ð1 2 vsilicateÞEgallery

ð16Þ

vp;12 ¼ xvsillicate þ ð1 2 xÞvgallery;12; ð17Þ

Gp;12 ¼
GsilicateGgallery;12

ð1 2 xÞGsilicate þ xGgallery;12

ð18Þ

Manevitch and Rutledge [43] calculated the elastic behavior

of a single silicate sheet from molecular dynamics (MD)

simulations. The MD simulations compute the membrane

stiffness, Esilicateds ¼ 246 , 258 N=m: In order to determine

a value for the modulus Esilicate; one must divide the

membrane stiffness by the sheet thickness. There is

ambiguity is assigning a thickness to a particle of one

lattice unit thickness, since it is unclear how to assess the

proper radius of influence of an atom in this regard. This

issue has been successfully addressed in the CNT literature

[41] where a combination of atomistic simulations of

membrane and bending deformation act to identify a

mechanical thickness (the thickness value that will provide

accurate representation of the mechanical behavior of the

atomic-thickness lamina, both stretching and bending, when

using continuum-level models). Pantano et al. [42] have

demonstrated that using the CNT wall (modulus, thickness)

pair computed in this manner, together with shell theory,

enables the prediction of a wide range in mechanical

behavior of single and multi-wall CNTs. Manevitch and

Rutledge [43] follow an analogous approach to extract a

(modulus, thickness) pair for the montmorillonite silicate

sheet from their MD simulations, which sampled both

membrane and bending behavior of the sheet. Their

calculations give a membrane stiffness which can be

further broken down to a (thickness, modulus) pair of

ds ¼ 0:615 nm and Esilicate ¼ 400–420 GPa, based on the

silicate layer bending stiffness deduced from buckling

behavior.

The elastic properties of the gallery are undetermined;

however, it is speculated that Egallery=Esilicate ! 1; and

Ggallery=Gsilicate ! 1; which will severely reduce the overall

Ep;22 and Gp;12 of the effective particle.

In some instances, the effect of particle anisotropy can be

neglected (see Section 5 for discussion). In those cases, only

two independent particle elastic constants, Ep and vp; are

required. We approximate Ep with Ep;11; and vp with vp;12:

Taking Esilicateds ¼ 250 N=m [43], Em ¼ 4 GPa;4 and

assuming Egallery ! Esilicate; the particle/matrix stiffness

ratio can be estimated as

Ep

Em

¼
xNðEsilicatedsÞ

Em

¼ ð62:5xNÞm: ð19Þ

The particle/matrix stiffness ratio given in Eq. (19) is

proportional to the number of silicate sheets per unit particle

thickness; we plot the stiffness ratio here in Fig. 15, as a

function of N and dð001Þ=ds; to emphasize the dramatic

decrease in ‘particle’ stiffness accompanying the morpho-

logical transition from complete exfoliation ðN ¼ 1Þ to

Fig. 13. Dependence of fp=Wc on clay structural parameters N and dð001Þ=ds:

Fig. 14. Schematic of a lamina with two phases: silicate sheet and gallery.

4 Here, we take the matrix to be MXD6 nylon with modulus of

Em ¼ 4 GPa. Obviously, any matrix can be studied by looking at different

matrix moduli.
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intercalation ðN $ 2Þ: However, it will be shown that the

overall modulus ratio, E11=Em; will not show a correspond-

ingly dramatic decrease when the morphology transitions

from complete exfoliation to intercalation, mainly because

of compensating effects of both fp=Wc and L=t; which can be

appreciated by consideration of Fig. 13.

5. Micromechanical modeling of intercalated

polymer/nanoclay composite

The hierarchical morphology of intercalated nanoclay

and surrounding polymer add constitutive as well as

structural complexity to nanocomposite modeling. Here,

we focus on structure-constitutive modeling of the nano-

clay. While the analytical micromechanical models

reviewed in Section 2.1 require effective representation of

the layered-nanoclay as a homogeneous isotropic ‘particle’,

FEM-based micromechanical simulations allow the inter-

calated clay particle to be modeled in various levels of

detail—an effective ‘particle’ with anisotropic elastic

properties, or even as a laminate consisting of silicate and

gallery. The tasks of this section are to explore these

different structural and constitutive models of the nanoclay;

to contrast the load transfer performances and overall

composite moduli predicted by each model; and to validate

the use of an ‘effective particle’ representation in analytical

micromechanical modeling of polymer/clay nanocompo-

sites. An exemplar three-layer clay structure is chosen for

illustration purposes.

5.1. Constitutive models

Due to the hierarchical morphology of intercalated

nanoclay (Section 3), we consider three possible struc-

tural/constitutive models of the volume to be assigned to

the clay ‘particle’: ‘discrete stack’, ‘anisotropic particle’

and ‘isotropic particle’, as shown in Fig. 16. The ‘discrete

stack’ (a) is a laminate composite consisting of N silicate

layers of thickness ds and inter-layer spacing dð001Þ; and

ðN 2 1Þ gallery layers of thickness dg ¼ dð001Þ 2 ds: Each of

the silicate and gallery layers are assigned distinct elastic

properties. The ‘anisotropic particle’ (b) is a homogenized

representation of (a), whose overall dimensions and aniso-

tropic elastic properties ðEp;11; Ep;22;Gp;12;Gp;13; vp;12Þ can

be calculated from Eq. (8) and Eqs. (15)–(19); the ‘isotropic

particle’ (c) is a further simplification of (b), characterized

simply by isotropic elastic constants Ep and vp.

For comparison purposes, we consider a specific model

intercalated clay structure with N ¼ 3; dð001Þ=ds ¼ 4; and

L=t ¼ 200=9; resulting via Eq. (6) in a ‘particle’ silicate

volume fraction x ¼ 1=3 (definition of x given in Eq. (6)).

Elastic constants of the silicate [43] and those assumed for

the gallery are given in Table 3. Corresponding effective

mechanical properties of the homogenized ‘anisotropic

particle’ and ‘isotropic particle’, calculated from Eqs. (15)–

(19), are listed in Table 4. Matrix material parameters are

assumed to be Em ¼ 4:0 GPa; vm ¼ 0:35 (shear modulus

Gm ¼ Em=2ð1 þ vmÞ ¼ 1:48 GPaÞ:

We assume that the orthotropic gallery has a very low

shear modulus ðGgallery;12 ¼ Gm=100Þ in order to study the

effect of anisotropy. As a result, Gp;12 of the homogenized

‘anisotropic particle’ is much smaller than that of the

homogenized ‘isotropic particle’. Recalling the shear-lag

analysis discussed in Section 2.2.2, profound differences in

the efficiency of load transfer into the interior of these

modeled ‘particles’ are expected.

5.2. Results

A 2D plane strain RVE containing fp ¼ 0:05 volume

fraction of particles with L=t ¼ 200=9 is constructed; the

geometry of the particle is designed such that it can

Fig. 15. Dependence of longitudinal particle modulus Ep=Em on clay

structural parameters N and dð001Þ=ds (Em ¼ 4 GPa).

Table 3

Elastic constants of the two components in the ‘discrete stack’, shown in

Fig. 12(a) ðN ¼ 3; dð001Þ=ds ¼ 4; L=t ¼ 200=9 ) x ¼ 1=3Þ; the silicate

layers are modeled as isotropic material whereas galleries are orthotropic

(Egallery;11 ¼ Egallery;22 ¼ Egallery;33; vgallery;12 ¼ vgallery;13 ¼ vgallery;23;

Ggallery;12 ¼ Ggallery;13 ¼ Ggallery;23)

Esilicate

(GPa)

vsilicate Egallery;11

(GPa)

vgallery;12 Ggallery;12

(GPa)

(a) Discrete stack 400 0.20 4.0 0.35 0.015

Table 4

Elastic constants of the homogenized effective ‘anisotropic particle’ and

‘isotropic particle’, shown in Fig. 16(b) and (c), respectively (calculated

from Eqs. (15)–(19))

Ep;11

(GPa)

Ep;22

(GPa)

vp;12 Gp;12

(GPa)

Gp;13

(GPa)

(b) Anisotropic particle 136 19.5 0.28 0.067 57

(c) Isotropic particle 136 136 0.28 53 53
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accommodate precisely the intercalated clay structures

characterized in Table 3 The three geometric/constitutive

models of the particles, described in Fig. 16 and Tables 3

and 4, are applied to the same RVE. Perfect bonding is

assumed for all material interfaces, including matrix/

particle, matrix/silicate, silicate/gallery and gallery/matrix.

Load transfer from the matrix to the particle is strongly

affected by the different shear properties of the three particle

models. Fig. 17 shows the tensile stress contours in one

specific particle in the RVE, when each of the three

structural/constitutive models of the particle is applied in

turn; the RVE is subjected to 0.5% macroscopic axial strain.

Both the differences and the similarities between Fig. 17(a),

(b) and (c) can be interpreted through shear-lag analysis. In

case (a), only a small amount of load is transferred to

the middle silicate layer, due to the low shear modulus of

the galleries; similarly, in case (b) the low Gp;12 of the

homogenized ‘anisotropic particle’ results in very low stress

inside the particle; however, in case (c) the load is efficiently

transferred to the interior of the particle because of the sub-

stantially higher Gp of the homogenized ‘isotropic particle’.

Despite such model-based differences in local stress

fields within the ‘particle’ domain, the macroscopic

responses of the RVE are rather close: the overall stiffness

enhancement E11=Em; predicted with use of models (a), (b)

and (c), are perhaps surprisingly close, 1.41, 1.37, and 1.44,

respectively. But such results are not surprising if we

compare the net axial force carried by each particle instead

of the axial stresses. Fig. 18 depicts the axial stress

distribution through the thickness of each particle model,

at the central cross section indicated in Fig. 17. The tensile

force carried by the particle can be obtained by integrating

the axial stress over the cross-section (along the y-axis, in

this case). The large stress in the outer discrete silicate

layers is counteracted by very low stress in the galleries, so

the tensile force carried by a silicate/gallery laminate differs

little from that carried by its effective representations.

We chose a relatively heavily loaded nanocomposite

ð fp ¼ 0:05Þ and assumed a very low gallery shear modulus

ðGgallery;12 ¼ Gm=100Þ; the differences in both the local

stress distribution and the macroscopic composite response

caused by different geometric/constitutive modeling of the

clay particle diminish with decreasing fp or increasing

Ggallery;12=Gm:

Although the idealized ‘isotropic particle’ (as is utilized

in many micromechanical models, including Halpin–Tsai

and Mori–Tanaka) seems to be a sufficiently good repre-

sentation of the intercalated nanoclay when axial deforma-

tion of perfectly aligned particle composite is concerned, it

is important to note that this approximation is inherently

conditional. Failure of the ‘isotropic’ model to capture the

Fig. 16. Constitutive and structural models of the clay particle: (a) discrete stack; (b) anisotropic homogenized particle; (c) isotropic homogenized particle. For

idealization (a), the material properties are indicated in Fig. 14.

 

 

 

 

 

Fig. 17. Axial stress distributions in a particular particle under 0.5% axial loading (fp ¼ 0:05; L=t ¼ 200=9). In separate simulations, the clay particle is modeled,

in turn, as: (a) discrete stack; (b) homogenized anisotropic particle; (c) homogenized isotropic particle. (Max/Min axial stress within the silicate domain for (a):

800 MPa/400 MPa; max/min axial stress within the particle domain for (b) and (c): 200 MPa/100 MPa).

Fig. 18. Axial stress distributions along the mid-particle cross-section,

marked in Fig. 17. The integrated tensile forces carried by each particle

model are similar, even though the stress distributions differ substantially.
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low Ggallery;12 will cause significant consequences under

circumstances of off-axial straining or particle misalign-

ment. For illustration purposes, the same RVE utilized in the

axial tensile deformation simulations discussed above is

subjected to simple shear deformation with the three particle

geometry/constitutive models. The calculated overall shear

modulus corresponding to the ‘discrete stack’, ‘anisotropic

particle’, and ‘isotropic particle’ are G12=Gm ¼ 0:71; 0.73,

and 1.57, respectively. The ‘isotropic’ model predicts a false

increase in overall G12; as a result of the high Gp of the

‘isotropic particle’. These simple shear results suggest that

an anisotropic (instead of isotropic) ‘particle’ should be

used to effectively represent the intercalated nanoclay when

particle misalignment or curvature is under concern.

In summary, we claim that for the purpose of determin-

ing the particle aspect ratio and stiffness, it is reasonable to

model the intercalated clay as a homogeneous isotropic

particle (at least in cases where the particles are well

aligned, the applied loading is axial, and the macroscopic

tensile modulus is of interest). The justification of using a

homogenized isotropic particle in micromechanical model-

ing of nanocomposites, in turn, suggests the potential contribu-

tion of conventional composite models presented in Section 2.

6. Application of multi-scale modeling

Through previous sections, multi-scale micromechanical

modeling of the polymer/clay nanocomposite has been

developed for internal consistency. In summary, clay

structural parameters ðL; N; dð001ÞÞ extracted from XRD

and/or TEM are mapped into effective ‘particle’ properties

ðL=t; fp=Wc; Ep=EmÞ; which are then used as model para-

meters in analytical or numerical micromechanical compo-

site models to calculate macroscopic stiffness of the

nanocomposite. Here, this modeling scheme is applied to

various polymer–clay nanocomposite systems; FEM pre-

dictions of the composite modulus based on the ‘effective

particle’ are compared with a series of experimental data;

finally the effects of processing on the overall mechanical

properties are estimated.

6.1. Parametric study of the effect of ðN; dð001ÞÞ on

composite modulus

Fig. 19 depicts the influence of internal clay structural

parameters ðN; dð001ÞÞ on the macroscopic modulus of the

nanocomposite; Eqs. (8), (14) and (19) are used to calculate

the micromechanical model parameters, where a silicate

sheet thickness ds of 0.615 nm5 is used in determining xN ;

the particle length L is assumed to be 200 nm in (a)–(c), and

100 nm in (d). The Mori–Tanaka model (Eq. (2)) is used

to predict the overall composite modulus. The effects of

ðN; dð001ÞÞ on ðL=t; fp=Wc; Ep=EmÞ corresponding to Fig. 19

are summarized in Table 5.

E11=Em is plotted as a function of Wc and N at a fixed

dð001Þ in Fig. 19(a). The strong dependence of E11=Em on N is

clearly demonstrated; at a fixed Wc; E11=Em increases with

decreasing N; the amount of increase gradually expands as

N ! 1; however, no dramatic change occurs in this limit. At

a given Wc; as N decreases, L=t and Ep increase, which both

act to increase E11; whereas fp decreases, which acts to

decrease E11: The increases in L=t and Ep have a stronger

effect than the decrease in fp: Fig. 19(b) depicts the effect of

dð001Þ=ds on the macroscopic modulus for two different

values of N: N ¼ 2; and N ¼ 5: Compared with N; the

influence of dð001Þ=ds on E11=Em is rather small, and depends

on the specific value of N: In general, for a fixed N and Wc;

E11=Em increases with increasing dð001Þ (note that a

maximum dð001Þ of 5 nm is studied; values larger than this

are not considered to be of interest); this increase is rather

negligible when N is small; however, when the nanocom-

posite is highly intercalated (e.g. N ¼ 5), the increase of a

few nanometers in dð001Þ can cause a considerable increase

in E11=Em: At a given Wc; as dð001Þ increases, both L=t and Ep

decrease, acting to decrease E11; whereas fp increases,

acting to increase E11: The increase due to fp prevails over

the decreases from L=t and Ep:

Note that in order to determine Ep=Em; Eq. (19)

used a matrix modulus of Em ¼ 4 GPa; which leads to

an Esilicate=Em ¼ 100 (taking ds ¼ 0:615 nm; Esilicate ¼

400 GPa). However, the modulus of different polymers

vary from order MPa (elastomers; amorphous polymers

above their glass transition temperature) to order GPa (semi-

crystalline polymers, glassy polymers, and epoxies) and

thus Esilicate=Em for different polymer–clay nanocomposite

systems has a wide range, from ,105 down to ,102. To

emphasize the strong effect of Ep=Em on composite

modulus, shown earlier in Figs. 1(c) and 4(c), we plot in

Fig. 19(c) the effect of N for two values of Esilicate=Em: For a

Table 5

Effect of primary descriptors (N; dð001Þ) on intermediate model descriptors

(L=t; fp=Wc; Ep=Em), calculated according to Eqs. (8), (14) and (19) (see also

Fig. 19)

N dð001Þ=ds L=t fp=Wc Ep=Em

Effect of N on model parameters

4 6.5 16 1.28 19.5

3 6.5 23 1.17 21.4

2 6.5 43 0.94 26.7

1 325 0.25 100

Effect of d(001)/ds on model parameters

2 1.6 124 0.328 76.2

2 8.1 36 1.14 21.9

5 1.6 43 0.375 66.6

5 4.9 16 1.03 24.4

5 8.1 10 1.68 14.9

5 Here, we choose this particular value of ds ¼ 0:615 nm since it pairs

with the silicate modulus of Ep ¼ 400 GPa; calculated from molecular

dynamics simulation [43]. In view of the substantial equivalence of the

various particle structure/property idealizations shown in Section 5,

equivalent results could be and were obtained with larger ds values,

along with consistently reduced silicate moduli.
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given exfoliated and well aligned clay content Wc; the

stiffness enhancement is much more dramatic for a

compliant matrix where Ep=Em is of order 105 (i.e.

elastomers or thermoplastics at temperatures above Tg)

than a stiff matrix where Ep=Em ¼ 102: In particular, if we

examine the case of 4 wt% clay, under fully exfoliated and

fully aligned conditions, the elastomer nanocomposite

modulus is over 3 times that of its matrix, whereas the

glassy polymer nanocomposite modulus is only ,50%

higher than its matrix. This prediction is fully consistent

with literature data (e.g. [10–12]). The effect of inter-

calated stacks ðN ¼ 2Þ vs. exfoliated layers ðN ¼ 1Þ is

shown to be modest for the glassy polymer nanocompo-

sites, but more dramatic for the elastomer nanocompo-

sites. This is also consistent with experimental data on

intercalated elastomeric polyurethane/clay nanocompo-

sites [9]. Specific comparisons between the proposed

model and much of the literature data (such as [9–12])

are not possible because most authors have not provided

enough detail regarding the underlying microstructure of

the materials in their studies, such as L=t; silicate sheet

orientation, N; dð001Þ; and weight fraction. As seen in our

model results, all of these factors are contributory to the

end composite modulus.

The impact of multiple factors (e.g. L=t; Ep=Em; N) on the

composite modulus is emphasized by Fig. 19(d), where all

model parameters are exactly those used in Fig. 19(c) except

that L ¼ 100 nm rather than 200 nm. The effect of L is

rather dramatic, comparing Fig. 19(c) and (d). The exfoli-

ated elastomer nanocomposite still exhibits a dramatic modu-

lus enhancement relative to that observed in the glassy

polymer nanocomposite, but the intercalated elastomer nano-

composite ðN $ 2Þ does not distinguish in as dramatic a

manner from the glassy polymer nanocomposite enhancement.

6.2. Application to specific polymer–clay nanocomposite

systems

6.2.1. Amorphous polymer matrix

Eastman Chemical provided injection-molded

MXD6/clay nanocomposites with various clay weight

fractions varying from 0 to 5.27%. The chemical structure

Fig. 19. Effect of clay structural parameters (N; dð001Þ) on the macroscopic modulus, predicted by the Mori–Tanaka model; model parameters calculated from

Eqs. (8), (14) and (19), ds ¼ 0:615 nm; L ¼ 200 nm for (a), (b) and (c), L ¼ 100 nm for (d). (a) Effect of N at fixed dð001Þ: dð001Þ ¼ 4:0 nm: (b) Effect of dð001Þ at

two fixed values N ¼ 2 and N ¼ 5: (c) Effect of matrix stiffness for exfoliated ðN ¼ 1Þ and intercalated (N ¼ 2) systems, with L ¼ 200 nm: (d) Effect of matrix

stiffness for exfoliated and intercalated systems, with L ¼ 100 nm:
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of the polymer matrix is primarily MXD6-6007 polyamide,

an amorphous polymer with high barrier properties

produced by Mitsubishi Gas and Chemical Company. The

layered montmorillonite clay is I.34MN organoclay from

Nanocor Inc.

Material Characterization. TEM micrographs of MXD6-

clay nanocomposite with various clay contents are shown in

Fig. 9. Intercalated multi-layer stacks with length ,200 nm

are well aligned in the flow direction. X-ray scattering

reveals that the fine structure of intercalated clay stacks is

independent of clay content; in particular, the average

number of silicate sheets per stack is N , 3; and the average

inter-layer spacing is dð001Þ ¼ 4:1 nm [40].

Experimental description. Uniaxial tensile tests are

conducted on various clay content specimens with a

Model-5582 Instron at room temperature and strain rate of

,0.05/s; dog-bone-shaped plate tensile specimens with

gage length of 12.7 mm and thickness of 3 mm were

prepared according to ASTM D638. For each clay content,

4–6 tests were performed. During each test, an extens-

ometer was used to measure the axial strain; the tensile

modulus of the composites was obtained from the initial

slope of true stress–strain curves.

Simulation. Two-dimensional RVEs with perfect particle

alignment and random particle locations were used to model

the nanocomposites. Key effective particle parameters

determined from Eqs. (8), (14) and (19), using

L ¼ 200 nm6, dð001Þ ¼ 4:1 nm; ds ¼ 0:615 nm; N ¼ 3; are

the following: L=t ¼ 23; fp=Wc ¼ 1:20; and Ep=Em ¼ 21: We

compare the experimental data with both simulation results

and predictions from the Halpin–Tsai and Mori–Tanaka

models. Predicted results for the overall composite modulus

are depicted in Fig. 20. Results of Mori–Tanaka model and

FE simulation using the ‘effective particle’ concept are in

good agreement with the experimental data, while the

Halpin–Tsai model is too stiff. The FE models give more

precise predictions than the Mori–Tanaka model, but the

latter provides a reasonably accurate analytical estimate for

the nanocomposite modulus.

6.2.2. Semi-crystalline polymer matrix

In semi-crystalline polymer–clay nanocomposite sys-

tems, the crystallization behavior of the matrix can be

directly influenced by the presence of nanoclay particles.

Both TEM and X-ray studies [34,35] of injection-molded

nylon 12-clay and nylon 6-clay nanocomposites reveal that

the fine lamella are oriented with their planes perpendicular

to the polymer/clay interface, while the silicate sheets are

aligned in the flow direction. In addition, the degree of

orientation of polymer crystallites is found to increase

linearly with increasing clay content, while the degree of

crystallization remains constant [35]. A TEM of nylon

12-clay (Fig. 21(a), [34]) shows that this transcrystallized

morphology has percolated throughout the entire matrix at a

clay content of Wc ¼ 2%: Based on the above observations,

it is necessary to include in the FEM simulation a third

‘phase’ (in addition to the effective particle and isotropic

matrix) extending from the particle/polymer interfaces in

order to model the transcrystallized matrix. Fig. 21(b)

shows a schematic where each particle has a transcrys-

talline matrix layer of thickness htc on either side of it.

In the following FEM calculations in this section, we

assume htc ¼ 50 nm7.

Constitutive behavior of the transcrystalline matrix

layer. Lin and Argon [46] produced a highly textured

nylon 6 that macroscopically mimics a single crystal with

orthotropic symmetry and obtained a complete set of nine

elastic constants. Tzika, Boyce and Parks [47] (refer to Ref.

[48] for details) used these results as guidance in

determining the elastic constants and anisotropic yield

surface of transcrystallized nylon 6 induced by inclusion of

rubber particles; the transcrystalline material was modeled

as transversely isotropic with the plane of isotropy parallel

to the polymer/particle interface (plane 13 in Fig. 21(b)).

Table 6 summarizes the five elastic constants with respect to

the Young’s modulus of the isotropic bulk matrix material

(see Fig. 21(b) for coordinates). Here, we too, model the

transcrystalline matrix layer with transverse isotropy, and

estimate the anisotropy by using the ratios given in Table 6.

Note that while E11 now exceeds Em by ,30%, G12 is

substantially lowered, which potentially compromises the

load transfer efficiency from the matrix to the particle.

Fig. 20. Predictions of the effective longitudinal modulus for MXD6/clay

nanocomposites (L=t ¼ 23; Ep=Em ¼ 21; fp=Wc ¼ 1:20; N ¼ 3; ds ¼ 0:615

nm; dð001Þ ¼ 4:1 nm).

6 Lateral dimension of montmorillonite can vary from ,100 to

,200 nm. For I.34MN organoclay, L , 200 nm:

7 Kojima has observed that the degree of crystallite orientation increases

linearly till fp ¼ 0:008 (which corresponds to Wc ¼ 2%; given L ¼ 100 nm;

t ¼ 1 nm); together with Fig. 21(a), it is not unreasonable to assume that

Wc ¼ 2% is a critical point above which transcrystallization percolates. The

inter-layer spacing for a perfectly aligned exfoliated system with Wc ¼ 2%;

L=t ¼ 100=1 is calculated to be ,100 nm, hence the thickness of the

transcrystalline layer htc is determined as 100 nm/2 ¼ 50 nm.
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With the morphology and constitutive behavior of the

transcrystalline matrix layer described above, we now

simulate semi-crystalline polymer/clay nanocomposite sys-

tems with three phases: particle, transcrystallized aniso-

tropic matrix, and isotropic matrix, and compare the

predicted overall composite modulus with the results of

experiments on nylon 6-clay nanocomposites carried out by

two groups of researchers.

Room temperature modulus of exfoliated nylon 6-clay

nanocomposites with clay contents varying from 0.2 to

7.2 wt% are obtained from van Es et al.8 [14] and Fornes

et al. [49]. Both groups claim nearly complete exfoliation

and good particle alignment for partial (up to 5 wt% for van

Es et al.) or complete range of the clay content. RVEs with

well-aligned particles (L=t ¼ 100=19) are generated to model

the fully exfoliated systems. FEM results with and without

transcrystalline matrix layers are plotted, together with

experimental data, in Fig. 22(a). The elastic constants of the

transcrystalline material are calculated from the matrix

Fig. 21. (a) TEM of nylon-12/clay nanocomposite, showing a lamellar

structure perpendicular to the aligned clay particles [34]. (b) Schemetic of

transcrystalline matrix layers of thickness htc on both sides of the particles.

The white matrix material exterior to the transcrystalline matrix layers is

assumed to have isotropic elastic properties.

Table 6

Elastic constants of transcrystalline nylon 6, normalized with Em; Young’s

modulus of isotropic matrix [47]

E11;tc=Em E22;tc=Em v12;tc v13;tc G12;tc=Em

1.29 0.99 0.53 0.33 0.11

Refer to Fig. 21(b) for coordinates.

Fig. 22. (a) FEM results in comparison with experimental data for

exfoliated nylon 6-clay nanocomposites at room temperature ([14], [49]).

(b) FEM results (modeled with transcrystalline matrix layers) in

comparison with experimental data for HMT (high molecular weight)

and MMT (medium molecular weight) nylon 6-clay nanocomposites [49],

where the HMT composite is completely exfoliated and the MMT

composite is partially exfoliated.

8 van Es et al. performed DMTA tests and extracted storage modulus

from the DMTA data at fixed temperatures. Here, we analyze their data at

T ¼ 23 8C:
9 Here, we assume the thickness of a single silicate layer, ds; to be

1 nm, as is often referred to in related literature. The corresponding

silicate stiffness is Esilicate ¼ 250 GPa; however, the specific values of

the pair (ds; Esilicate) have little effect on the predicted macroscopic

composite modulus.
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modulus at 0% clay concentration, Em; and the ratios given

in Table 6 (Em is given as 2.63 and 2.75 GPa from Ref. [14]

and [49], respectively; we use the former value as there is no

need for distinction).

The models with added transcrystalline matrix layers

give results in excellent agreement with experimental data;

however the DMTA data from van Es et al. severely levels

off at Wc ¼ 5%; which is suspected to have resulted from

poor particle alignment and/or imperfect exfoliation.10

While the transcrystallization of the matrix does contribute

to the enhancement of the overall composite modulus, the

dominant reinforcing source is still the clay particles (at

Wc ¼ 7%; the perfectly aligned clay increased the compo-

site modulus by ,100%, whereas the presence of trans-

crystalline layers added only an additional 5%). One should

also bear in mind that although E11;tc is about 30% higher

than Em (Table 6), the low G12;tc tends to lower the

efficiency of load transfer from the matrix to the particles,

which explains why at Wc ¼ 7%; when the transcrystalline

structure has percolated, the predicted additional modulus

increase from the special matrix morphology is 5% rather

than 30%. It’s also interesting to notice that a slight decrease

in slope occurs at , Wc ¼ 2%; which is consistent with our

assumption that 2 wt% is the critical exfoliated clay content

above which matrix transcrystallization percolates.

Another important aspect to explore is the effect of

imperfect exfoliation. Fornes and coworkers [49] studied

the dependency of composite tensile modulus on matrix

molecular weight, which essentially affects the degree of

exfoliation; in particular, their low molecular weight nylon

6-clay system is intercalated, their medium molecular

weight (MMT) system is partially exfoliated, and their

high molecular weight (HMT) system is nearly completely

exfoliated. We simulate the MMT and HMT composite

systems in order to verify the model capability to capture the

effects of imperfect exfoliation as well as the effect of

particle-induced transcrystallization of the matrix. TEM

micrographs reveal that while the HMT composite is

dominated by individual silicate layers with the presence

of a few intercalated stacks (the averaged number of layers

per stack �N , 1:3), the MMT system contains a higher

fraction of multi-layer stacks ð �N , 1:5Þ:

To simulate the HMT composite, we generated RVEs

containing particles of uniform length and thickness (the

small fraction of intercalated stacks are neglected); two

particle lengths are used in the FEM calculations:

L ¼ 80 nm and L ¼ 100 nm, the former value reported by

Fornes et al. [49], based on TEM micrographs, and the latter

value usually cited in the literature for a typical length of

montmorillonite. To simulate the MMT composite, we

generated RVEs containing particles with a distribution in

thickness, mimicking a system with 50% of silicate mass in

two-layer stacks and the remaining 50% in exfoliated

layers.11 Transcrystalline matrix layers with thickness of

htc ¼ 50 nm are included in all of the simulations. FEM

results for E11=Em as a function of Wc for the above compo-

site systems are plotted in Fig. 22(b), together with the HMT

and MMT experimental data. Composite moduli of both

exfoliated and partially exfoliated systems, predicted by the

modified model, are in good agreement with experimental

data. The presence of intercalated stacks clearly impairs

the stiffness reinforcing efficiency of a nearly exfoliated

system—these stacks not only have lower modulus com-

pared with a silicate sheet, they also provide less external

interface areas for induction of transcrystalline matrix

material (since some silicate layer surfaces are now inside

a particle instead of dispersed in the matrix).

6.3. Effect of melt-processing towards complete exfoliation

Melt-processing has been observed to have an impact on

the morphology of polymer/clay nanocomposites. Delami-

nation (a decrease in N) and inter-layer swelling (an

increase in dð001Þ) result from melt-processing, as reported in

Ref. [50,51]. As an example, we study the effect of melt-

processing on MXD6/clay nanocomposite taken from Lee

and McKinley [40]. The amorphous MXD6 matrix reduces

the complexity of the nanocomposite system, allowing us to

focus on the effect of morphological changes in the particle

phase only.

Injection-molded MXD6/clay nanocomposite ðWc ¼

5:27%Þ after melt-processing (screw RPM ¼ 150,

T ¼ 250 8C) exhibit structure changes in the nanoclay

[40]. The as-received material has an intercalated mor-

phology; after processing, the average value of N decreases

from ,3 to ,2, and the average inter-layer spacing, dð001Þ;

increases from 4.1 to 4.5 nm. In the limiting case of

complete exfoliation, N ! 1:

As the clay internal structure evolves towards smaller N

and larger dð001Þ; ultimately reaching N ¼ 1; substantial

changes in the effective ‘particle’ properties occur: particle

aspect ratio increases (Eq. (8)), particle stiffness also

increases (Fig. 15); however, for a fixed Wc; particle

volume fraction decreases (Fig. 13). These evolving

effective ‘particle’ properties accompanying evolving clay

structure, caused by processing towards exfoliation, are

listed in Table 7. Note that when N decreases from 2 to 1,

there is a dramatic increase in both L=t and Ep=Em; but also a

corresponding abrupt drop in fp=Wc:

FEM calculations of the overall plane strain composite

modulus, E11=Em; for material as received, after processing,
10 For a fully percolated system ðWc . 2%Þ; given perfect particle

alignment, the transcrystalline material alone increases the modulus by

30% ðE11;tc=Em , 1:3Þ. Thus, the fact that the composite modulus (DMTA

data) only increased by ,40% at Wc ¼ 5% indicates a substantial degree of

particle misalignment.

11 Suppose we have a total number of 100 silicate sheets. 50% two-layer

stacks gives 25 (100 £ 50%/2 ¼ 25) particles with a thickness of dð001Þ þ

ds; while the remaining 50 sheets are particles with a thickness of ds: In our

simulation, it is assumed that dð001Þ ¼ 4 nm; and ds ¼ 1 nm:
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and completely exfoliated (model parameters given in

Table 7), are depicted in Fig. 23. The modulus increase

associated with increasing degree of exfoliation can be

attributed to the increased particle aspect ratio and particle

stiffness. Note that the extremely large L=t and Ep=Em when

N ¼ 1 did not bring about a dramatic jump in E11 due to the

significantly reduced effective particle volume fraction for a

fixed clay weight fraction, and to strong particle interference

in load transfer efficiency. It should also be noted that the

particles are assumed to remain planar in the modeling.

However, TEM images show that fully exfoliated single

silicate layers and two-layer particles have a greater

tendency to be curved, compared to particles with more

layers; this increased bending compliance and resulting

angular misorientation will further reduce the efficiency of

fully exfoliated particles in enhancing the composite

modulus. Thus, considering processing difficulties, com-

plete exfoliation may not be the optimal choice as far as the

overall stiffness is concerned, unless exfoliated particle

bending and misorientation can be effectively suppressed.

7. Conclusions

Continuum-based micromechanical models can provide

robust predictions of the overall elastic properties of

polymer/clay nanocomposites, provided that a reliable

method is employed to account for the intrinsically

hierarchical morphology of intercalated nanoclay, and for

the special matrix morphology and properties adjacent to

the particles. The intercalated nanoclay, idealized as a

multi-layer stack with N silicate sheets and inter-layer

spacing of dð001Þ; can be effectively represented as a

homogeneous ‘particle’, which possesses the same spatial

domain occupied by both the silicate layers and the inter-

layer galleries. Transcrystallization behavior in semi-

crystalline polymer matrix, induced by the presence of

nanoclay, is taken into account by adding highly anisotropic

matrix layers around the particles. A careful mapping

between the characteristic clay structural parameters (N;

dð001Þ) and clay weight fraction ðWcÞ and the conventional

micromechanical model parameters (particle volume frac-

tion fp; particle aspect ratio L=t; and particle elastic behavior)

is established. Various two-dimensional RVEs of the

underlying structure of polymer/clay nanocomposite are

constructed. In nanocomposites with aligned particles, the

almost negligible difference in the predicted overall axial

modulus whether the clay is constitutively modeled as a

‘discrete stack’ or a homogenized ‘effective particle’, adds

additional justification to the multi-scale modeling strategy.

In the presence of nonaxial loading or particle misalign-

ment, the orthotropic rather than isotropic ‘effective

particle’ should be used in order to account for the

potentially low shear modulus of the inter-layer galleries.

The model is found to capture the strong enhancement in

composite modulus observed for elastomer/nanoclay nano-

composites as compared with the more moderate enhance-

ments observed in glassy and semicrystalline thermoplastics

as well as epoxies. The model prediction of the overall

modulus of well-characterized amorphous (MXD6) and

semi-crystalline (nylon 6) polymer–clay nanocomposites

are in good agreement with experimental data. This scheme

is also used to predict the ultimate stiffness that can be

achieved in the nanocomposite by processing towards

complete exfoliation. In contrast to expectation, there is

no abrupt stiffness increase associated with morphological

transition from intercalation ðN $ 2Þ to exfoliation ðN ¼ 1Þ

when examining the effect of clay weight fraction on

macroscopic stiffness.
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Fig. 23. Effect of processing towards complete exfoliation on the overall

composite stiffness. Each FEM data point is averaged over results of 10

random RVE realizations; variation is reflected by error bars.

Table 7

Evolution of the effective particle’s structure and properties as intercalated

structure is processed towards exfoliation

Material N dð001Þ (nm) x L=t fp=Wc Ep=Em

MXD 6/clay (as-received) ,3 4.1 0.21 23 1.20 21

After processing ,2 4.5 0.24 39 1.04 24

Completely exfoliated 1 1.0 325 0.25 100

Resulting macroscopic stiffness shown in Fig. 23. L ¼ 200 nm; ds ¼

0:615 nm:
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